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Abstract In this paper, we considered the non-autonomous Droop model for
phytoplankton growth in a chemostat in which the nutrient input varies non-
periodically. It is assumed that growth rate varies with the internal nutrient level of the
cell and the uptake rate of phytoplankton depends on both the external and the inter-
nal nutrient concentrations. A series of new criteria on the positivity, boundedness,
permanence and extinction of the population is established.
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1 Introduction

The chemostat is an important laboratory apparatus used to culture microorganisms.
See [4,5,12,14], and [22–25] for a detailed description of a chemostat and for various
mathematical models for analyzing chemostat models.The Droop model (see [2,3])
of phytoplankton growth in a chemostat has been widely investigated in many liter-
atures (see [7–10]). As in Monod [10], the classical chemostat equations modeling
phytoplankton population dynamics originally related the growth rate of the cells to
the nutrient concentration in the medium. It is assumed that the nutrient uptake rate
is proportional to the rate of reproduction. The constant of proportionality which con-
verts units of nutrient to units of organisms is called the yield constant. Because of the
assumed constant value of the yield, the classical Monod model is refereed to as the
constant-yield model by Grover [9].
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Droop [2] observed that under nonequilibrium correlations the nutrient concentration
in the chemostat remained relatively high at the low dilution rates, a phenomenon that
cannot be explained by the Monod model. This led him to introduce the notion of an
internal nutrient pool and to propose that nutrient uptake is function of the ambient
nutrient concentration while growth rate varies with the internal nutrient level of the
cell, called the cell quota, which may be viewed as the average amount of stored nutri-
ent in each cell of the particular organism in the chemostat. The cell quota increases
due to nutrient uptake and decreases duo to cell division, which acts to spread the total
stored nutrient uptake over more cells. Grover [7,9] refereed to the Droop model as
the variable-yield or the the variable-nutrient stored model.

There has been a great deal of current interest among phytoplankton ecologists in
both experimental and theoretical analysis of nutrient-limited phytoplankton growth
and competition studies in variable-nutrient environments (see Smith [13], Grover
[7,8] and Sommer [11]). There are number of different operating parameters in the
Droop model in addition to the feed-nutrient concentration which might be inter-
esting to vary with time in a periodic manner (see Butler, Hsu and Waltman [1],
Stephanopoulos et al. [16], Smith [14,15], Smith and Waltman [12]). Smith [14] stud-
ied the dynamics of the Droop model incorporating a periodically varying nutrient
input which takes the following forms

dN

dt
= N (µ(Q) − D),

dQ

dt
= ρ(S, Q) − µ(Q)Q,

dS

dt
= D(S0(t) − S) − Nρ(S, Q), (1)

where the nutrient input S0(t), uptake rate of nutrient by phytoplankton cells ρ(S, Q)

and the growth rate of phytoplankton population µ(Q) varies periodically. In [14], the
author proved that the periodically forced Droop model (1) has precisely two dynamic
regimes depending on a threshold condition involving the dilution rate. If the dilution
rate is such that the sub-threshold condition hold, the phytoplankton population is
washed out of the chemostat. If the super-threshold condition holds, then there is a
unique periodic solution to which all solutions approach asymptotically.

Stimulated by the work of [14], we introduce the following more general case of
model (1):

dN

dt
= N (µ1(t, Q) − D(t)),

dQ

dt
= ρ1(t, S, Q) − µ2(t, Q)Q,

dS

dt
= a(t) − b(t)S − Nρ2(t, S, Q), (2)

where S(t) denotes the concentration of the nutrient and N (t) denotes the concentra-
tion of the phytoplankton cells in the culture vessel; Q(t) denotes the internal nutrient
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level of the cells, called the cell quota, which may be viewed as the average amount of
stored nutrient in each cell of the particular organism in the chemostat; The ρ1(t, S, Q)

represents the per unit biomass uptake rate of nutrient by phytoplankton cells and
ρ2(t, S, Q) denotes the consumption rate of phytoplankton cells at time t ; µ1(t, Q)

describes the per unit biomass growth rate and µ2(t, Q) denotes the removal rate. a(t)
and b(t) are the input nutrient concentration and the dilution rate, respectively, and
D(t) represents the specific removal rate (it equals to sum of death rate and washout
rate of the population N (t)).

The aim of this paper is to discuss the positivity, boundedness, permanence and
extinction of the all species for model (2) and establish a series of very interesting
criteria. The methods used in this paper are motivated by the works on the uniform
persistence for the periodic predator-prey Lotka–Volterra models in [18], the per-
manence and extinction for the periodic predator-prey systems in patchy environ-
ment with delay in [20] and the permanence criteria in nonautonomous predator-prey
Kolmogorov systems and its applications in [21].

The organization of this paper as follows. In the next section, we introduce several
assumptions for model (2) and the definitions of the permanence and extinction of
species. Further, we will give two lemmas which will be essential to our proofs and
discussions. Positivity and boundedness of solutions of model (2) are discussed in
Sect. 3. In Sect. 4, the results on the permanence and strong persistence of solutions
of model (2) are stated and proved. At last, in Sect. 5 the results on the extinction of
solutions of model (2) will be stated and proved.

2 Preliminaries

We denote R+ = (0, ∞), R+0 = [0, ∞), R2+ = R+×R+, R2+0 = R+0×R+0, R3+ =
R+ × R+ × R+ and R3+0 = R+0 × R+0 × R+0. In this paper, for model (2) we always
assume that the following condition holds.

(H1) Functions a(t) and b(t) are bounded and continuous defined on R+0, inf t∈R+
a(t) ≥ 0 and there is a constant ω > 0 such that

lim inf
t→∞

t+ω∫

t

a(s)ds > 0, lim inf
t→∞

t+ω∫

t

b(v)dv > 0.

Assumption (H1) shows that, when time t is large enough, the growth rate of the
nutrient and the dilution rate of the nutrient on interval [t, t + ω] are strictly positive.

Putting N = 0 in the last equation of model (2), we obtain

dS

dt
= a(t) − b(t)S. (3)

Let constant α0 > 0. For any constant α ∈ [−α0, α0] and a bounded continuous
function c(t) : R+0 → R, we further consider the following equation
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dS

dt
= a(t) + αc(t) − b(t)S. (4)

For any initial point (t0, S0) ∈ R+0 × R+. Let S∗(t) and Sα(t) be the solutions of
systems (3) and (4) satisfying the initial conditions S∗(t0) = S0 and Sα(t0) = S0,
respectively. Using a similar argument as in [19], we can prove the following result.

Lemma 1 Suppose that (H1) holds. Then we have

(a) There are constants M1 > 1 and 0 < γ0 < 1 such that for any (t0, S0) ∈
R+0 × R+ and α ∈ [−γ0, γ0]

M−1
1 ≤ lim inf

t→∞ S∗(t) ≤ lim sup
t→∞

S∗(t) ≤ M1,

and

M−1
1 ≤ lim inf

t→∞ Sα(t) ≤ lim sup
t→∞

Sα(t) ≤ M1.

(b) Sα(t) is globally uniformly attractive on [t0, ∞).
(c) Sα(t) converges to S∗(t) uniformly for t ∈ [t0, ∞) as α → 0.

Let S∗(t) be some fixed positive solution of system (3) with initial value S∗(0) =
S∗

0 > 0. For model (2), we introduce the following assumptions.

(H2) Function ρ1(t, S, Q) satisfies the following conditions:

(a) ρ1(t, S, Q) is continuous, ρ1(t, S, Q) ≥ 0 and ρ1(t, 0, 0) = 0 for all (t, S, Q)

∈ R3+0; ρ1(t, S∗(t), 0) is bounded on t ∈ R+0.

(b) The derivative ∂ρ1(t,S,Q)
∂S and ∂ρ1(t,S,Q)

∂ Q exist, ∂ρ1(t,S,Q)
∂S ≥ 0 and ∂ρ1(t,S,Q)

∂ Q ≤ 0

for all (t, S, Q) ∈ R3+0; for any constant η > 0,
∂ρ1(t,S,Q)

∂S is bounded on
(t, S, Q) ∈ R+0 × [0, η] × [0, η].

(c) There is a constant k1 > 0 such that lim inf t→∞
∫ t+ω

t ρ1(u, S∗(u), k1)du >

0.

(H3) Function ρ2(t, S, Q) satisfies the following conditions:

(a) ρ2(t, S, Q) is continuous, ρ2(t, S, Q)≥0 and ρ2(t, 0, 0)=0 for all (t, S, Q) ∈
R3+; for any positive constants α and β, ρ2(t, α, β) is bounded on t ∈ R+0
and lim inf t→∞ ρ2(t, α, β) > 0.

(b) The derivative ∂ρ2(t,S,Q)
∂S and ∂ρ2(t,S,Q)

∂ Q exist, ∂ρ2(t,S,Q)
∂S ≥ 0 and ∂ρ2(t,S,Q)

∂ Q ≤
0 for all (t, S, Q) ∈ R3+0; for any constants η > 0,

∂ρ2(t,S,0)
∂S is bounded on

(t, S) ∈ R+0 × [0, η].
(H4) Function µ1(t, Q) satisfies the following conditions:

(a) µ1(t, Q) is continuous and µ1(t, 0) = 0 for all (t, S) ∈ R2+0; for any constant
σ > 0, µ1(t, σ ) is bounded on t ∈ R+0.

(b) The derivative ∂µ1(t,Q)
∂ Q exists and ∂µ1(t,Q)

∂ Q ≥ 0 for all (t, Q) ∈ R2+0; for any

constant α > 0,
∂µ1(t,Q)

∂ Q is bounded on (t, Q) ∈ R+0 × [0, α].
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(H5) Function µ2(t, Q) satisfies the following conditions:

(a) µ2(t, Q) is continuous and µ2(t, 0) = 0 for all (t, S) ∈ R2+0; for any constant

σ > 0, µ2(t, σ ) is bounded on t ∈ R+0 and lim inf t→∞
∫ t+σ

t µ2(s, k2)ds >

0.
(b) The derivative ∂µ2(t,Q)

∂ Q exists for all (t, Q) ∈ R2+0 and there is a nonnega-

tive continuous function q(t), satisfying lim inf t→∞
∫ t+ω

t q(s)ds > 0, and a
continuous function p(u), satisfying p(u) > 0 for all u ∈ R+, such that

∂µ2(t, Q)

∂ Q
≥ q(t)p(Q) for all (t, Q) ∈ R2+0.

(H6) Function D(t) is bounded and continuous on R+0 and there is a constant
ω > 0 such that lim inf t→∞

∫ t+ω

t D(s)ds > 0.

Remark 1 Assumptions (H2) and (H3) show that the uptake rate of the nutrient by
phytoplankton cells ρ1(t, S, Q) and assumption rate of the nutrient by phytoplankton
cells ρ2(t, S, Q) are strictly increasing with nutrient concentration S, nonincreasing
with cell quota Q, and to vanish in the absence of nutrient and cell quota. In other
words, an increase in the ambient nutrient concentration with no change in cell quota
leads to a greater uptake rate and consumption rate, while an increase in the internal
pool with no change in ambient nutrient concentration can only decrease the uptake
rate and consumption rate. In (H2) we see that, when time t is large enough and nutri-
ent reach the available nutrient and the cell quota keep a constant value, the values of
the uptake rate of the phytoplankton on interval [t, t + ω] are strictly positive.

In assumptions (H4) and (H5), we see that, when the concentration of the cell quota
increases, the per capita growth rate of phytoplankton cell µ1(t, Q) and removal rate
of cell quota µ2(t, Q) are increasing and vanish in the absence of cell quota; The
phytoplankton growth rate µ1(t, Q) and the racial rate of the phytoplankton growth
rate to the cell quota are limited when cell quota keep constant; when time t is large
enough and the cell quota keep a constant value, the values of the the removal rate of
the cell quota on interval [t, t + ω] are strictly positive.

Assumption (H6) shows that when time t is large enough, the values of the sum of
death rate and washout rate of the population N (t) on interval [t, t + ω] are strictly
positive.

Let (N (t), Q(t), S(t)) be any solution of model (2). If N (t) > 0, Q(t) > 0 and
S(t) > 0 on its maximal existence interval, then such solution is called to be positive.
The definitions of permanence, persistence and extinction of population have been
given in many articles (see, for example, [6,17]). Here, for the requirement of this
paper we give the following statements.

Definition 1 Let (N (t), Q(t), S(t)) be any positive solution of model (2).

(a) Plankton population N is said to be strongly persistent, if lim inf t→∞ N (t) > 0.

(b) Plankton population N is said to be permanent, if there are constants M ≥ m > 0,
and M and m are independent of any positive solution of model (2), such that
m ≤ lim inf t→∞ N (t) ≤ lim supt→∞ N (t) ≤ M.
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(c) Plankton population N is said to be extinct, if limt→∞ N (t) = 0.

Similarly, we can give the definitions of strong persistence, permanence and extinc-
tion of nutrients S and Q. We here omit them.

Putting S(t) = S∗(t) in the second equation of model (2), we obtain

dQ

dt
= ρ1(t, S∗(t), Q) − µ2(t, Q)Q. (5)

Since inf t∈R+0 S∗(t) > 0 by Lemma 1, we can choose a constant α0 > 0 such that
inf t∈R+0 S∗(t) − α0 > 0. For any α ∈ [−α0, α0], we further consider the following
equation

dQ

dt
= ρ1(t, S∗(t) + α, Q) − µ2(t, Q)Q. (6)

For any initial point (t0, Q0) ∈ R+0 × R+, let Q∗(t) and Qα(t) be the solutions of
systems (5) and (6) satisfying the initial conditions Q∗(t0) = Q0 and Qα(t0) = Q0,
respectively. We have the following result.

Lemma 2 Suppose that (H1), (H2) and (H5) hold. Then we have

(a) there are constants M2 > 1 and 0 < γ0 < 1 such that for any (t0, Q0) ∈
R+0 × R+ and α ∈ [−γ0, γ0]

M−1
2 ≤ lim inf

t→∞ Q∗(t) ≤ lim sup
t→∞

Q∗(t) ≤ M2,

and

M−1
2 ≤ lim inf

t→∞ Qα(t) ≤ lim sup
t→∞

Qα(t) ≤ M2;

(b) Qα(t) is globally uniformly attractive on [t0, ∞);
(c) Qα(t) converges to Q∗(t) uniformly for t ∈ [t0, ∞) as α → 0.

Proof On the basis of (H1) and (H4), conclusion (a) can be proved by using a similar
argument as in [22, Lemma 1].

Now, we prove conclusion (b). For any constant η > 1 and t̄0 ∈ [t0, ∞), let Q̄α(t)
be a solution of system (6) with initial value Q̄α(t̄0) ∈ [η−1, η] . By conclusion (a),
there are constants M0 > 1 and 0 < γ0 < 1 such that for any α ∈ [−γ0, γ0]

M−1
0 ≤ Q∗(t) ≤ M0, M−1

0 ≤ Qα(t) ≤ M0 for all t ≥ t0. (7)
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Consider Liapunov function V (t) = | ln Q̄α(t) − ln Qα(t)|. Calculating the Dini
derivative D+V (t), by (H2) and (H5) we obtain

D+V (t) = sign(Q̄α(t) − Qα(t))[Q̄−1
α (t)ρ1(t, S∗(t), Q̄α(t))

−Q−1
α (t)ρ1(t, S∗(t), Qα(t)) − µ2(t, Q̄α(t)) + µ2(t, Qα(t))]

≤ sign(Q̄α(t) − Qα(t))[µ2(t, Qα(t)) − µ2(t, Q̄α(t))]
= −∂µ2(t, ξ(t))

∂ Q
|Qα(t) − Q̄α(t)|

≤ −q(t)p(ξ(t))|Qα(t) − Q̄α(t)|, (8)

for all t ≥ t̄0, where ξ(t) is situated between Qα(t) and Q̄α(t). Hence V (t) ≤ V (t0)
for all t ≥ t̄0. Consequently, by (7) we have

| ln Q̄α(t)| ≤ | ln Qα(t)| + V (t0) ≤ ln(ηM2
0 ),

for all t ≥ t̄0. Hence η−1 M−2
0 ≤ Qα(t) ≤ ηM2

0 for all t ≥ t̄0. Further by (7), we
obtain

η−1 M−2
0 V (t) ≤ |Qα(t) − Q∗

α(t)| ≤ ηM−2
0 V (t),

for all t ≥ t̄0. Consequently, by (8) it follows that

D+V (t) ≤ −M−1
0 η−1q(t)p(ξ(t))V (t) = −q(t)M3V (t) for all t ≥ t̄0, (9)

where M3 = M−1
0 η−1 min{p(Q) : η−1 M−2

0 ≤ Q ≤ ηM2
0 }.

Since lim inf t→∞
∫ t+ω

t q(u)du > 0, we can choose positive constants δ and T1
such that

t+ω∫

t

q(u)du ≥ δ for all t ≥ T1.

Let T ′
1 = t̄0 + T1. For any t ≥ T ′

1, there is an integer nt ≥ 0 such that t ∈
[T ′

1 + ntω, T ′
1 + (nt + 1)ω). Integrating (9) from T ′

1 to t , we have

V (t) ≤ V (T ′
1) exp

t∫

T ′
0

(−M0q(u))du

= V (T ′
1) exp

⎡
⎢⎣

T ′
1+ω∫

T ′
0

+ · · · +
t∫

T ′
0+nt ω

⎤
⎥⎦ (−M0q(u))du

≤ V (T ′
1) exp(−M3δnt ).
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Since V (T ′
1) ≤ V (t̄0) ≤ ln(ηM0), we further have

V (t) ≤ ln(ηM0) exp[−M3δω
−1(t − T ′ − ω)]

= M∗η exp[−M3δω
−1(t − t0)], (10)

where M∗ = ln(ηM0) exp[M3δ(1 + T ′
1

ω
)]. Hence, for any constant ε > 0, from (10),

there is a large enough T (η, ε) ≥ T ′
1 such that

V (t) <
ε

ηM2
0

for all t ≥ t̄0 + T (η, ε).

Therefore, |Qα(t) − Q̄α(t)| < ε for all t ≥ t̄0 + T (η, ε). This shows that solution
Qα(t) is globally uniformly attractive on [t0, ∞).

Finally, we prove conclusion (c). By conclusion (a) of Lemma 1, we have M−1
4 ≤

S∗(t) ≤ M4 for all t ∈ R+0, where M4 is some positive constant. Let V (t) =
| ln Qα(t) − ln Q∗(t)|, calculating the Dini derivative, by (H2) and (H5) we obtain

D+V (t) = sign(Qα(t) − Q∗(t))[Q−1
α ρ1(t, S∗(t) + α, Qα(t)) − µ2(t, Qα(t))

−Q∗−1(t)ρ1(t, S∗(t), Q∗(t)) + µ2(t, Q∗(t))]
= sign(Qα(t) − Q∗(t))[Q−1

α (t)ρ1(t, S∗(t) + α, Qα(t))

−Q−1
α (t)ρ1(t, S∗(t), Qα(t)) + Q−1

α (t)ρ1(t, S∗(t), Qα(t))

−Q∗−1(t)ρ1(t, S∗(t), Q∗(t)) + µ2(t, Q∗(t)) − µ2(t, Qα(t))]
≤ −∂µ2(t, ξ1(t))

∂ Q
|Qα(t) − Q∗(t)| + Q−1

α (t)|∂ρ1(t, ξ2(t), Qα(t))

∂S
α|

≤ −q(t)p(ξ1(t))|Qα(t) − Q∗(t)| + M5|α|
≤ −q(t)p(ξ1(t))M−1

0 V (t) + M5|α|
≤ −q(t)p0V (t) + M5|α|, (11)

where ξ1(t)) is situated between Qα(t) and Q∗(t), ξ2(t) situated between S∗(t) + α

and S∗(t), p0 = M−1
0 min{p(Q) : M−1

0 ≤ Q ≤ M0} and

M5= sup

{∣∣∣∣∂ρ1(t, S, Q)

∂S

∣∣∣∣ Q−1 : t∈R+0, S ∈ [M−1
4 , M4 + γ0], Q ∈ [M−1

0 , M0]
}
.

Since M5 < ∞, lim inf t→∞
∫ t+ω

t q(u)du > 0 and Qα(t0) = Q∗(t0), by the com-
parison theorem and the variation of constants formula of solutions for first-order
linear differential equations we can obtain from (11) that V (t) → 0 uniformly for
t ∈ [t0,∞) as α → 0. Since

|Qα(t) − Q∗(t)| ≤ M0V (t) for all t ∈ [t0, ∞),

we finally have that Qα(t) → Q∗(t) uniformly for t ∈ [t0, ∞) as α → 0. This
completes the proof.
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3 Positivity and boundedness

For any z0=(N0, Q0, S0) ∈ R3+, we denote by z(t, z0)=(N (t, z0), Q(t, z0), S(t, z0))

the solution of model (2) with initial condition z(0, z0) = z0. On the positivity of
solutions of model (2) we have the following result.

Theorem 1 Suppose that (H1) − (H6) hold. Let z(t) = (N (t), Q(t), S(t)) be a solu-
tion of model (2) with initial condition z(0) = (N (0), Q(0), S(0)). If z(0) ∈ R3+, then
z(t) > 0 for all t ∈ R+0.

Proof Let I = [0, t1) be the maximal interval such that z(t) = (N (t), S(t), Q(t))
exists and is positive for all t ∈ I . Obviously, t1 > 0. We will prove t1 = ∞.
Suppose t1 < ∞. Then we must have either limt→t1 min{S(t), Q(t), N (t)} = 0 or
limt→t1 max{S(t), Q(t), N (t)} = ∞. From model (2) we have

dS(t)

dt
≤ a(t) − b(t)S(t) for all t ∈ I.

Using the comparison principle and conclusion (a) of Lemma 2 for α = 0, we obtain
that S(t) is bounded on I , say 0 < S(t) ≤ S1 for all t ∈ I , where S1 is some positive
constant. Further from model (2) we also have

dQ(t)

dt
≥ −µ1(t, Q(t))Q(t),

dN (t)

dt
≥ −D(t)N (t),

for all t ∈ I . Hence,

Q(t) ≥ Q(0) exp

⎛
⎝−

t∫

0

µ1(u, Q(u))du

⎞
⎠ ,

and

N (t) ≥ N (0) exp

⎛
⎝−

t∫

0

D(u)du

⎞
⎠ ,

for all t ∈ I . Consequently, there are positive constants Q0 and N0 such that Q(t) ≥
Q0 and N (t) ≥ N0 for all t ∈ I .

Since

dQ(t)

dt
≤ ρ1(t, S(t), Q(t)) ≤ ρ1(t, S1, Q0),

for all t ∈ I , we directly obtain that there is a constant Q1 > 0 such that Q(t) ≤ Q1
for all t ∈ I . Since, further,

dN (t)

dt
≤ µ1(t, Q(t))N (t) ≤ µ1(t, Q1)N (t),
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for all t ∈ I , we obtain that N (t) also is bounded on I , say N (t) ≤ N1 for all t ∈ I .
By (H3), we obtain further

dS(t)

dt
≥ −b(t)S(t) − N (t)ρ2(t, S(t), Q(t))

≥ −b(t)S(t) − N1ρ2(t, S(t), 0)

= −b(t)S(t) − N1
∂ρ2(t, ξ(t), 0)

∂S
S(t)

≥ −k2S(t),

for all t ∈ I , where ξ(t) ∈ (0, S(t)) and

k2 = sup

{
b(t) + N1

∂ρ2(t, S, 0)

∂S
: t ≥ 0, 0 ≤ S ≤ S1

}
.

Obviously, k2 < ∞. Hence, there is a constant S0 > 0 such that S(t) ≥ S0 for all
t ∈ I . From the above discussion we obtain finally

inf
t∈I

{S(t), Q(t), N (t)} > 0, sup
t∈I

{S(t), Q(t), N (t)} < ∞,

which leads to a contradiction. This completes the proof. �	
On the boundedness of all solutions of model (2) we have the following result.

Theorem 2 Suppose that (H1) − (H6) hold. Then there is a constant M0 > 0 such
that any positive solution (N (t), S(t), Q(t)) of model (2)

lim sup
t→∞

N (t) < M0, lim sup
t→∞

S(t) < M0, lim sup
t→∞

Q(t) < M0.

Proof Let (N (t), Q(t), S(t)) be any solution of model (2) with the initial value
(N (0), Q(0), S(0)) ∈ R3+. From Theorem 1, we have that (N (t), Q(t), S(t)) is
defined on R+0 and is positive. Since

dS(t)

dt
≤ a(t) − b(t)S(t) for all t ∈ R+0,

by the comparison principle and conclusion (a) of Lemma 1 for α = 0, we can obtain
that there exists a T0 > 0 such that

S(t) ≤ S∗(t) + γ0 < 2M1 for all t ≥ T0,

where constant γ0 ∈ (0, 1) is given in Lemma 2. Further since

dQ(t)

dt
≤ ρ1(t, S∗(t) + γ0, Q(t)) − µ2(t, Q(t))Q(t),
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for all t ≥ T0, by the comparison principle and conclusion (a) of Lemma 2 for α = γ0,
we can obtain that there exists a T1 > T0 such that

Q(t) ≤ Qγ0(t) ≤ M2 + γ0 < 2M2,

for all t ≥ T1, where Qγ0(t) is the solution of the following equation

dQ(t)

dt
= ρ1(t, S∗(t) + γ0, Q(t)) − µ2(t, Q(t))Q(t),

satisfying the initial condition Qγ0(T0) = Q(T0).
Write B = max{2M1, 2M2}. From (H2) to (H6) we can choose the positive con-

stants ε0, ε1, r, N0 and T ∗, satisfying ε0 < ε1 < 1 and ε0 < inf t∈R+0 S∗(t), such that
for all t ≥ T ∗

t+ω∫

t

(µ1(u, ε1 exp(βω)) − D(u))du ≤ −r,

t+ω∫

t

(
ρ1(u, ε0, ε1)

ε1
− µ2(u, ε1))du ≤ −r,

and

a(t) − b(t) − N0ρ2(t, ε0, B) ≤ −r, (12)

where

β = sup
t∈R+0

{
ρ1(t, ε0, ε1)

ε1
+ µ2(t, ε1)

}
.

By (H2) and (H5) we have β < ∞.
We first will prove

lim inf
t→∞ N (t) ≤ N0. (13)

In fact, if (13) is not true, then there is T ∗ ≥ T1 such that N (t) > N0 for all t ≥ T ∗.
If S(t) ≥ ε0 for all t ≥ T ∗, then by (12) we have

dS(t)

dt
≤ a(t) − b(t)ε0 − N0ρ2(t, ε0, B) < −γ (14)

for all t ≥ T ∗. It follows S(t) → −∞ as t → ∞ which is contradiction. Hence, there
is a t1 > T ∗ such that S(t1) < ε0. Further, if there is a t0 > t1 such that S(t0) > ε0,
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then there is a t∗ ∈ (t1, t0) such that S(t∗) = ε0, and S(t) > ε0 for all t ∈ (t∗, t0].
Hence, we have dS(t∗)

dt ≥ 0. However, on the other hand, in view of (12) we have

dS(t∗)
dt

≤ a(t∗) − b(t∗)ε0 − N0ρ2(t
∗, ε0, B) < 0.

Therefore, a contradiction is obtained. This shows S(t) ≤ ε0 for all t ≥ t1.
If Q(t) ≥ ε1 for all t ≥ t1, then

dQ(t)

dt
= Q(t)(

ρ1(t, S(t), Q(t))

Q(t)
− µ2(t, Q(t)))

≤ Q(t)(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1)),

for all t ≥ t1. Consequently,

Q(t) ≤ Q(t1) exp

t∫

t1

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1))dt

for all t ≥ t1. Since

∞∫

t1

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1))dt = −∞,

we obtain limt→∞ Q(t) = 0 which leads to a contradiction. Hence, there exists a
t2 > t1 such that Q(t2) < ε1. If further there exists a t3 > t2 such that Q(t3) >

ε1 exp(βω), then by the continuity of Q(t) there exists a t4 ∈ (t2, t3) such that Q(t4) =
ε1 and Q(t) > ε1 for all t ∈ (t4, t3]. Choosing an integer p ≥ 0 such that t3 ∈
[t4 + pω, t4 + (p + 1)ω), then we obtain

ε1 exp(βω) < Q(t3)

= Q(t4) exp

t3∫

t4

(
ρ1(t, S(t), Q(t))

Q(t)
− µ2(t, Q(t))

)
dt

≤ ε1 exp

t3∫

t4

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1)

)
dt
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= ε1 exp

⎡
⎢⎣

t4+ω∫

t4

+ · · · +
t4+pω∫

t4+(p−1)ω

+
t3∫

t4+pω

⎤
⎥⎦

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1)

)
dt

≤ ε1 exp

t3∫

t4+pω

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1)

)
dt

≤ ε1 exp(βω),

which leads to a contradiction. Hence, we finally have

Q(t) ≤ ε1 exp(βω) for all t ≥ t2. (15)

From this, we immediately obtain

dN (t)

dt
≤ N (t)(µ1(t, ε1 exp(βω)) − D(t)),

for all t ≥ t2. Integrating from τ to t it follows

N (t) ≤ N (τ ) exp

t∫

τ

(µ1(v, ε1 exp(βω)) − D(v))dv.

By (13), we further obtain N (t) → 0 as t → ∞, which leads to a contradiction.
Therefore, (13) is true.

Now, we prove that there is a constant M6 > 0 such that

lim sup
t→∞

N (t) ≤ M6. (16)

If (16) is not true, then there is an initial value sequence {zn = (Nn, Sn, Qn)} ⊂ R3+
such that

lim sup
t→∞

N (t, zn) > (2N0 + 1)n for all n = 1, 2, 3, . . . .

In view of (13), for each n, there are two time sequences {v(n)
q } and {t (n)

q }, satisfying

0 < v
(n)
1 < t (n)

1 < v
(n)
2 < t (n)

2 < · · · < v
(n)
q < t (n)

q < · · · and v
(n)
q → ∞ as q → ∞,

such that

N (v(n)
q , zn) = 2N0, N (t (n)

q , zn) = (2N0 + 1)n,

and

2N0 < N (t, zn) < (2N0 + 1)n for all t ∈ (v(n)
q , t (n)

q ).
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Obviously, there are T (n) > 0 and K (n) > 0 such that S(t, zn) < B and Q(t, zn) < B
for all t ≥ T (n) and v

(n)
q > T (n) for all q ≥ K (n). Since

dN (t, zn)

dt
≤ N (t, zn)(µ1(t, B) − D(t)) for all t ≥ T (n),

when q ≥ K (n), integrating the above inequality from v
(n)
q to t (n)

q we have

n ≤ exp

t (n)
q∫

v
(n)
q

(µ1(v, B) − D(v))dv.

Consequently, by assumption (H3)

t (n)
q − v(n)

q → ∞ as n → ∞ and q ≥ K (n). (17)

By (11), (H2) and (H4)–(H6) we can choose a constant P > 0 such that for any t ≥ P
and a ∈ R+

a+t∫

a

(µ1(v, ε1 exp(βω)) − D(v))dv < −γ,

a+t∫

a

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1))dt < ln

(ε1

B

)

and γ P > B−ε0. By (17), there is an N∗ > 0 such that t (n)
q > v

(n)
q +3P for all n ≥ N∗

and q ≥ K (n). For any n ≥ N∗, q ≥ K (n), if S(t) ≥ ε0 for all t ∈ [v(n)
q , v

(n)
q + P],

then we have

dS(t)

dt
≤ a(t) − b(t)ε0 − N0ρ2(t, ε0, B) < −γ.

Consequently

ε0 ≤ S(v(n)
q + P, zn) ≤ S(v(n)

q , zn) − γ P < ε0,

which is a contradiction. Hence, there is a t1 ∈ [v(n)
q , v

(n)
q +P] such that S(t1, zn) < ε0.

A similar argument as in above we can prove S(t, zn) < ε0 for all t ≥ t1.
If Q(t, zn) ≥ ε1 for all t ∈ [t1, t1 + P], then we have

dQ(t)

dt
≤ Q(t)

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1)

)
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for all t ∈ [t1, t1 + P], consequently,

ε1 ≤ Q(t1 + P)

≤ Q(t1) exp

t1+P∫

t1

(
ρ1(t, ε0, ε1)

ε1
− µ2(t, ε1))dt

< B exp
(

ln
(ε1

B

))
= ε1,

which is a contradiction. Hence there is a constant t2 ∈ [t1, t1 + P] such that
Q(t2, zn) < ε1. A similar argument as in above we further can prove Q(t, zn)< ε1
exp(βω) for all t ≥ t2. From this, we obtain

dN (t, zn)

dt
≤ N (t, zn)(µ1(t, ε1 exp(βω)) − D(t)) for all t ∈ [t2, t (n)

q ].

Therefore,

(2N0 + 1)n = N (t (n)
q , zn)

≤ N (τ0, zn) exp
∫ t (n)

q

τ0

(µ1(v, ε1 exp(βω)) − D(v))dv

< (2N0 + 1)n,

which is a contradiction. This shows that (16) is true. Choose a constant M0 >

max{B, M6}, then we finally have

lim
t→∞ sup N (t) < M0, lim

t→∞ sup S(t) < M0, lim
t→∞ sup Q(t) < M0.

This completes the proof. �	
Remark 2 The biological meanings of Theorems 1 and 2 are very obvious, because
in a chemostat the sizes of cultured phytoplankton cells N , nutrients S and Q actually
must be nonnegative and limited.

4 Permanence

Let Q∗(t) be some fixed positive solutions of Eq. 4 with initial condition Q∗(0) =
Q∗

0 > 0. On the permanence of species N of model (2) we have the following result.

Theorem 3 Suppose that (H1)–(H6) hold. If there exists a constant λ > 0 such that

lim inf
t→∞ λ−1

t+λ∫

t

(µ1(v, Q∗(v)) − D(v))dv > 0, (18)

then species N of model (2) is permanent.
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Proof In view of conclusion (a) of Lemma 2 we have directly 0 < inf t≥0 Q∗(t) ≤
supt≥0 Q∗(t) < ∞. We first prove that there is a constant α > 0 such that for any
positive solution (N (t), S(t), Q(t)) of model (2)

lim sup
t→∞

N (t) > α. (19)

From (18), (H2), (H4) and (H6) we can choose the positive constants ε and T1 such
that inf t∈R+0 Q∗(t) − ε > 0 and

t+λ∫

t

(µ1(v, Q∗(v) − ε) − D(v))dv ≥ ε (20)

for all t ≥ T1. For any small enough constant α > 0, we consider the following two
auxiliary equations

dy

dt
= ρ1(t, S∗(t) − α, y) − µ2(t, y)y, (21)

and

dz

dt
= a(t) − αρ1(t, M0, 0) − b(t)z, (22)

where M0 is given in Theorem 2. Let yα(t) and zα(t) be the solutions of Eqs. 21 and
22 with initial values yα(0) = Q∗

0 and zα(0) = S∗
0 , respectively. By conclusion (c)

of Lemmas 1 and 2, we obtain that yα(t) converges to Q∗(t) and zα(t) converges to
S∗(t) uniformly for all t ∈ R+ when α → 0. Hence, there is a constant α = α(ε) > 0
with 2α < ε such that

yα(t) ≥ Q∗(t) − ε

2
, zα(t) ≥ S∗(t) − ε

2
for all t ∈ R+. (23)

If lim supt→∞ N (t) < α, then from Theorem 2 there is a T2 ≥ T1 such that N (t)<α,

S(t) < M0 and Q(t) < M0 for all t ≥ T2. Since

dS(t)

dt
≥ a(t) − b(t)s(t) − αρ2(t, M0, 0),

for all t ≥ T2, by the comparison theorem we have S(t) ≥ z(t) for all t ≥ T2, where
z(t) is the solution of Eq. 22 with initial value z(T2) = S(T2). By conclusion (b)

of Lemma 2, zα(t) is globally uniformly attractive. Hence, there is a enough large
T3 ≥ T2 such that

z(t) ≥ zα(t) − ε

2
for all t ≥ T3.
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By (23) we further obtain

z(t) ≥ zα(t) − ε

2
≥ S∗(t) − ε for all t ≥ T3. (24)

It follows from (24), that

dQ(t)

dt
≥ ρ1(t, S∗(t) − ε, Q(t)) − µ2(t, Q(t))Q(t).

By the comparison theorem we have Q(t) ≥ y(t) for all t ≥ T3, where y(t) is the
solution of Eq. 21 with initial value y(T3) = Q(T3). By conclusion (b) of Lemma 2,
yα(t) is globally uniformly attractive. Hence, there is a enough large T4 ≥ T3 such
that

y(t) ≥ yα(t) − ε

2
for all t ≥ T4.

Hence,

Q(t) ≥ yα(t) − ε

2
≥ Q∗(t) − ε for all t ≥ T4.

Since

dN (t)

dt
≥ N (t)(µ1(t, Q∗(t) − ε) − D(t)),

for all t ≥ T4, by integrating we have

N (t) ≥ N (T4) exp

⎡
⎢⎣

t∫

T4

(µ1(v, Q∗(v) − ε) − D(v))dv

⎤
⎥⎦ .

By (20), it follows that N (t) → ∞ as t → ∞, which is a contradiction. Therefore,
(19) is true.

Suppose that the conclusion of Theorem 3 is not true, then there is a sequence
{zn = (Nn, Sn, Qn)} ⊂ R3+0 such that

lim inf
t→∞ N (t, zn) <

α

n + 1
for all n = 1, 2, 3, . . . ,

where 2α < ε. In view of (12), for each n, there are two time sequences {v(n)
q } and

{t (n)
q }, satisfying 0 < v

(n)
1 < t (n)

1 < v
(n)
2 < t (n)

2 < · · · < v
(n)
q < t (n)

q < · · · and

v
(n)
q → ∞ as q → ∞, such that

N (v(n)
q , zn) = α, N (t (n)

q , zn) = α

n + 1
,
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and

α

n + 1
< N (t, zn) < α for all t ∈ (v(n)

q , t (n)
q ).

Since

dN (t, zn)

dt
≥ −D(t)N (t, zn),

integrating from v
(n)
q to t (n)

q we can obtain

exp

t (n)
q∫

v
(n)
q

D(v)dv ≥ n + 1.

Hence,

t (n)
q − v(n)

q → ∞ as n → ∞, (25)

By (20), there are positive constants P and η such that for any t ≥ P and a ∈ R+,

a+t∫

a

(µ1(v, Q∗(v) − ε) − D(v))dv > η. (26)

By Theorem 2, there is a T (n) > 0 such that

S(t, zn) < M0 for all t ≥ T (n).

Obviously, there is a K (n) > 0 such that v
(n)
q > T (n) for all q ≥ K (n). Let z(t) be the

solution of Eq. 22 with the initial value z(v(n)
q ) = S(v

(n)
q , zn). Since zα(t) is globally

uniformly attractive for Eq. 22, we obtain that there is a T0 > P and T0 is independent
of any q and n such that

z(t) ≥ zα(t) − ε

2
for all t ≥ T0 + v(n)

q . (27)

Let y(t) be the solution of Eq. 21 with the initial value y(v
(n)
q +T0) = Q(v

(n)
q +T0, zn).

Since yα(t) is globally uniformly attractive for Eq. 21, we obtain that there is a T ∗ > P
and T ∗ is independent of any q and n such that

y(t) ≥ yα(t) − ε

2
for all t ≥ T ∗ + v(n)

q + T0.
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By (23), there is an N∗ > 0, such that t (n)
q > v

(n)
q + T0 + T ∗ + P for all n > N∗ and

q ≥ K (n). For any n and q ≥ k(n), we have

dS(t, zn)

dt
≥ a(t) − b(t)S(t, zn) − αρ2(t, M0, 0), (28)

for all t ∈ [v(n)
q , t (n)

q ] By (28) and the comparison theorem, it follows S(t, zn) ≥ z(t)

for all t ∈ [v(n)
q , t (n)

q ] and q ≥ K (n). Hence, from (24) for any n ≥ N∗ and q ≥ K (n)

we have

S(t, zn) ≥ z(t) ≥ S∗(t) − ε for all t ∈ [v(n)
q + T0, t (n)

q ].

Further, since

dQ(t, zn)

dt
≥ ρ1(t, S∗(t) − ε, Q(t, zn)) − µ2(t, Q(t, zn))Q(t, zn), (29)

for all t ∈ [v(n)
q +T0, t (n)

q ], by the comparison theorem, it follows that Q(t, zn) ≥ y(t)

for all t ∈ [v(n)
q + T0, t (n)

q ] and q ≥ K (n). Hence, from (23) and the above inequality,
for any n ≥ N∗ and q ≥ K (n) we have

Q(t, zn) ≥ y(t) ≥ Q∗(t) − ε for all t ∈ [v(n)
q + T̃ , t (n)

q ],

where T̃ = T0 + T ∗. Since

dN (t, zn)

dt
≥ N (t, zn)(µ1(t, Q∗(t) − ε) − D(t)),

for all t ∈ [v(n)
q + T̃ , t (n)

q ], by integrating we have

N (t (n)
q , zn) ≥ N (v(n)

q + T̃ , zn) exp

t (n)
q∫

v
(n)
q +T̃

(µ1(v, Q∗(v) − ε) − D(v))dv.

From this and by (25) we obtain

α

n + 1
≥ α

n + 1
exp

t (n)
q∫

v
(n)
q +T̃

(µ1(v, Q∗(v) − ε) − D(v))dv

>
α

n + 1
,

which is a contradiction. This completes the proof. �	
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Remark 3 In model (2) theµ1(t, Q) and D(t) indicate the growth rate and the removal
rate of the phytoplankton cells, respectively. So, µ1(t, Q)−D(t) is the intrinsic growth
rate of phytoplankton cells. On the other hand, let (S(t), Q(t), N (t)) be any positive
solution of model (2), then one can prove that lim supt→∞ S(t) ≤ lim supt→∞ S∗(t)
and lim supt→∞ Q(t) ≤ lim supt→∞ Q∗(t) . Hence, when time is large enough, S∗(t)
and Q∗(t) can be take for the available maximum value of S(t) and Q(t), respectively.
Thus, in inequality (18), µ1(t, Q∗(t))− D(t) is the available maximum value of phy-
toplankton N at time t . The left hand of inequality (18) indicates inferior limit of the
maximum intrinsic growth rate in the mean of phytoplankton N on interval [t, t + λ].
Therefore, Theorem 3 shows that phytoplankton cells must be permanent when the
inferior limit value is positive.

Further, on the permanence of nutrients S and Q for model (2), we have the fol-
lowing result.

Theorem 4 Suppose that (H1)–(H6) hold. Let (N (t), S(t), Q(t)) be any positive solu-
tion of model (2).

(a) If species N is strong persistent, then nutrient S and quota Q also are strong
persistent.

(b) If species N is permanent, then nutrient S and quota Q also are permanent.

Proof We only give the proof of conclusion (a). We firstly prove that if species N is
strongly persistent then quota Q is also strongly persistent. Choose positive constants
η and T0 such that

t+ω∫

t

(µ1(v, η) − D(v))dv < −η for all t ≥ T0. (30)

If there is a T1 > 0 such that Q(t) < η for all t ≥ T1, then we have

dN (t)

dt
≤ N (t)(µ1(t, η) − D(t)) for all t ≥ T1.

Integrating from T1 to t we obtain

N (t) ≤ N (T1) exp

t∫

T1

(µ1(v, η) − D(v))dv.

From this and by (30), it follows that N (t) → 0 as t → ∞. This leads to a contradiction
with the strong persistence of N . Therefore, we have lim supt→∞ Q(t) ≥ η.

If lim inf t→∞ Q(t) = 0, then there are two time sequences {tq} and {sq}, satisfying
0 < s1 < t1 < s2 < t2 < · · · < sq < tq < · · · , such that for each q = 1, 2, . . .

Q(tq) = η

q2 , Q(sq) = η

q
,
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and

η

q2 < Q(t) <
η

q
for all t ∈ (sq , tq).

Since

dQ(t)

dt
= ρ1(t, S(t), Q(t)) − µ2(t, Q(t))Q(t)

≥ −µ2(t, η)Q(t),

for all t ∈ [sq , tq ], we have

exp

tq∫

sq

µ2(t, η)dt ≥ q for all q = 1, 2, . . . .

Hence, tq − sq → ∞ as q → ∞. Let lim inf t→∞ N (t) = α > 0 by the strong
persistence of N and further let N0 = supt∈R+0

N (t), then N0 < ∞ by Theorem 2.
By (30), there is a constant P > 0 such that

N0 exp

t+a∫

t

[µ1(s, η) − D(s)]ds <
α

2
for all t ∈ R+0, a ≥ P.

Choose a q0 > 0 such that tq − sq ≥ P for all q ≥ q0, then for any q ≥ q0, we have

N (tq) ≤ N (sq) exp

tq∫

sq

(µ1(t, η) − D(t))dt ≤ α

2
.

Hence, lim inf t→∞ N (t) ≤ lim infq→∞ N (tq) ≤ α
2 < α which leads to a contradic-

tion. Therefore, quota Q is strongly persistent. Next, a similar argument as in above,
we can prove that if quota Q is strongly persistent, then nutrient S is also strongly
persistent. This completes the proof of conclusion (a). �	
Remark 4 The biological meaning of the Theorem 4 is very obvious, because in
model (1) survival of the phytoplankton cells depends only on internal stored nutri-
ent Q, and internal stored nutrient Q depends only on external nutrient S. Hence, if
nutrient S can not survive, then nutrient Q also can not survive. Consequently, phy-
toplankton N will extinct. Whereas, if phytoplankton cells in chemostat survive, then
all nutrient both in internal and external nutrient survive.

When model (2) degenerated into the periodic case, i.e. a(t), b(t) and D(t) are
continuous and ω-periodic functions and ρi (t, S, Q) and µi (t, Q) (i = 1, 2) are con-
tinuous and ω-periodic functions with respect to t ∈ R, then we can easily obtain
that solution S∗(t) of system (3) and Q∗(t) of system (5) are also periodic. Therefore,
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from Theorem 3- 4 and Theorem on existence of periodic solution in [6, Theorem 1],
we have following Corollary.

Corollary 1 Suppose that model (2) is ω-periodic and (H1)–(H6) hold. If

ω∫

0

(µ1(v, Q∗(v)) − D(v))dv > 0,

then S(t), Q(t) and N (t) are permanent, and model (2) has at least one positive
ω-periodic solution.

5 Extinction

Lastly, on the extinction of species N of model (2), we have the following result.

Theorem 5 Suppose that (H1)–(H6) hold. If there is a constant ω > 0 such that

lim sup
t→∞

ω−1

t+ω∫

t

(µ1(v, Q∗(v)) − D(v))dv < 0, (31)

then for any positive solution (N (t), S(t), Q(t)) of model (2)

lim
t→∞ N (t) = 0, lim

t→∞(S(t) − S∗(t)) = 0. lim
t→∞(Q(t) − Q∗(t)) = 0.

Proof By (H4), we can choose a sufficient small constant r0 > 0 and a large enough
constant T0 > 0 such that

t+ω∫

t

(µ1(v, Q∗(v) + ε) − D(v))dv ≤ −r0 for all ε ∈ [0, r0], t ≥ T0. (32)

Consider the following equation

dy(t)

dt
= ρ1(t, S∗(t) + α, y(t)) − µ2(t, y(t))y(t). (33)

By conclusion (c) of Lemma 2, we obtain that for any ε ∈ (0, r0] there is a con-
stant αε > 0 such that solution y(t) of Eq. 33 with α = αε and initial condition
y(0) = Q∗(0) satisfies

y(t) ≤ Q∗(t) + ε

2
for all t ∈ R+0.

123



J Math Chem (2009) 46:459–483 481

Since

dS(t)

dt
≤ a(t) − b(t)S(t) for all t ≥ 0,

in view of the comparison theorem and conclusion (a) of Lemma 1, we obtain that
for any α > 0 there is a constant T (α) ≥ T0 such that

S(t) ≤ S∗(t) + α for all t ≥ T (α). (34)

Particularly, we have

S(t) ≤ S∗(t) + αε for all t ≥ T (αε). (35)

Further, since

dQ(t)

dt
= ρ1(t, S(t), Q(t)) − µ2(t, Q(t))Q(t)

≤ ρ1(t, S∗(t) + αε, Q(t)) − µ2(t, Q(t))Q(t),

for all t ≥ T (αε), by comparison theorem and conclusion (b) of Lemma 2 there is a
T2 ≥ T (αε) such that

Q(t) ≤ y(t) + ε

2
for all t ≥ T2.

Therefore, we finally have

Q(t) ≤ Q∗(t) + ε for all t ≥ T2.

By (H4) it follows for any t > T2

N (t) = N (T2) exp

t∫

T2

(µ1(v, Q(v)) − D(v))dv

≤ N (T2) exp

t∫

T2

(µ1(v, Q∗(v) + ε) − D(v))dv.

Therefore, by (32) we finally have N (t) → 0 as t → ∞.
For any small enough η > 0, we consider the following auxiliary equation

dS(t)

dt
= a(t) − b(t)S(t) − ηρ2(t, S∗(t) + α, 0). (36)

Let S∗
η(t) be the positive solution of system (36) with initial value S∗

η(0) = S∗(0). By
conclusion (c) of Lemma 1, for any α > 0 there is a η > 0 such that |S∗

η(t)−S∗(t)| < α
2
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for all t ∈ R+0. Since N (t) → 0 as t → ∞, for any η > 0 there is a Tη ≥ T2 such
that N (t) < η for all t ≥ Tη. Hence

dS(t)

dt
≥ a(t) − b(t)S(t) − ηρ2(t, S∗(t) + α, 0) for all t ≥ Tη.

From the comparison theorem and the global attractivity of S∗
η(t) by conclusion (b)

of Lemma 1, we can obtain that there is a T3 ≥ Tη such that S(t) > S∗
η(t) − α

2 for all
t > T3. Hence

S(t) > S∗(t) − α for all t > T3. (37)

Combining with (35) we finally obtain

|S(t) − S∗(t)| < α for all t > T3.

This shows S(t) → S∗(t) as t → ∞.
Finally, a similar argument as in above we can prove Q(t) → Q∗(t) as t → ∞.

This completes the proof. �	
Remark 5 The biological meaning of the Theorem 5 is also very obvious. In fact,
given similar explanation as to remark 3, left hand of inequality (3.1) indicate inferior
limit of maximum intrinsic growth in the mean of phytoplankton on interval [t, t +ω].
Therefore, Theorem 5 shows that phytoplankton N must be permanent when inferior
limit of maximum intrinsic growth in the mean of phytoplankton on interval [t, t +ω]
is negative.

When model (2) is periodic, as a corollary of Theorem 5, we have following result.

Corollary 2 Suppose that model (2) is ω periodic and (H1)–(H6) hold. If

ω∫

0

(µ1(v, Q∗(v)) − D(v))dv < 0,

then for any solution (S(t), Q(t), N (t)) of model (2), we have N (t) → 0 as t → ∞.
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